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Introduction

Throughout the nineteenth century, the attention of the mathematical
world was, to a large extent, concentrated on complex function theory, that
is, the study of meromorphic functions of a complex variable. Some of the
greatest mathematicians of that period, including Gauss, Cauchy, Abel,
Jacobi, Eisenstein, Riemann, Weierstrass, Klein and Poincaré, made
substantial contributions to this theory, and their work (mainly on what we
would now regard as specific, concrete problems) led to the subsequent
development of more general and abstract theories throughout pure
mathematics in the present century. Because of its central position, directly
linked with analysis, algebra, number theory, potential theory, geometry
and topology, complex function theory makes an interesting and important
topic for study, especially at undergraduate level: it has a good balance
between general theory and particular examples, it illustrates the develop-
ment of mathematical thought, and it encourages the student to think of
mathematics as a unified subject rather than (as it is often taught) as a
collection of mutually disjoint topics.

Even though the subject matter of this book is classical, it has recently
assumed great importance in several different areas of mathematics. For
example, the recent work on W. Thurston on 3-manifolds shows the vital
importance of hyperbolic geometry and Mobius transformations to this
rapidly developing subject; a totally different example is given by the work
of J.G. Thompson, J.H. Conway and others on the ‘monster’ simple group,
where the J-function, studied in Chapter 6, seems to play an important
(and, at the time of writing, rather mysterious) role. Thus many active
mathematicians, whose work may not involve classical complex function
theory directly, will nevertheless need to become familiar with certain
aspects of the theory, and we hope that they find our elementary approach
of use, at least initially.

This book is based on a final-year undergraduate course at the
University of Southampton, taught first by D.S. and then by G.AJ,, though
we have also included some additional material, generally at the end of a
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chapter, suitable for graduates or for more advanced undergraduates. Qur
aim, both in the lecture-course and in this book, is to teach some of the main
ideas about complex functions and Riemann surfaces, assuming only the
basic algebraic, analytic and topological theories covered by students in
their first and second years at university, and to show how these three
subjects can be combined to throw light on a single, specific topic. (Of
course, this involves reversing the historical development of the subject: to
the modern mind, general theories often appear more elementary and
accessible than the particular examples from which they grew.) Shortages of
space and time forced us to ignore the connections with, for example,
number theory and potential theory, interesting though they are; in any
case, there are excellent books on these topics.

In Chapter 1 we use stereographic projection to show how the addition of
a single point oo to C transforms the plane into a sphere, the Riemann
sphere £ = Cu {0}, and we describe the meromorphic functions f:X - X
from both an algebraic and a topological point of view. The main result,
which is a typical connection between analytic and algebraic concepts, is
that f:X — X is meromorphic if and only if it is a rational function.

Chapter 2 concerns the automorphisms of Z, that is, the meromorphic
bijections f:¥ — X, or equivalently the Mébius transformations

fig=2tb *)

cz+d’

with a,b,c,deC and ad — bc #0. These transformations form a group
Aut X under composition, and the emphasis of this chapter is mainly group-
theoretic; for example, the finite subgroups of Aut T are determined, and the
cross-ratio A is introduced in order to study the transitivity properties of
AutX. We also consider some of the geometric properties of Mdébius
transformations (especially their relationship with circles in ), and the way
in which AutZ acts as the Galois group of the field of all meromorphic
functions on X.

In Chapter 3 we study periodic meromorphic functions on C; these fall
into two classes, the simply and doubly periodic, according to whether the
group of periods has one or two generators. After briefly considering simply
periodic functions (such as the exponential and trigonometric functions),
and their Fourier series expansions, we devote the rest of the chapter to
doubly periodic functions, called elliptic functions because they first arose
from attempts to evaluate certain integrals associated with the formula for
the circumference of an ellipse. The periods of such a function form a lattice,
that is, a subgroup of C (under addition) generated by two complex
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numbers which are linearly independent over R. Just as the rational
functions are the meromorphic functions on the sphere X, the elliptic
functions can be regarded as the meromorphic functions on the torus C/Q
whose elements are the cosets in C of a lattice Q. There are many close
analogies between rational and elliptic functions, mainly based on the fact
that both £ and C/Q are compact surfaces: for example, an important
consequence of Liouville’s theorem is that an analytic function on either of
these surfaces must be constant. However, in the case of the torus (as opposed
to the sphere) the construction of non-constant meromorphic functions
represents a substantial problem: by imitating the infinite product expan-
sion of the simply periodic function sin(z), we introduce the Weierstrass
function o(z), and then by successive differentiation we obtain the
Weierstrass functions {(z) and £(z), the last of these being elliptic and not
constant. This approach is an alternative to the now-traditional direct
construction of £ (outlined in the exercises) by infinite series, and it involves
some elementary properties of uniform and normal convergence of infinite
series and products; these properties, important in their own right, are
outlined in §3.7 and §3.8. The rest of this chapter is concerned with deriving
properties of the functions €, { and o, and hence of all elliptic functions. For
example, the elliptic functions are precisely the rational functions of £ and
its derivative ', these two functions being related by an ordinary differential
equation® ' = ./(p(#)), where p is a cubic polynomial; the functions { and o,
though not themselves elliptic, are important for the construction of elliptic
functions with certain properties such as specific zeros, poles or principal
parts. The chapter closes with the addition theorem, expressing ¥ (z; + z,)
in terms of # (z,) and # (z,); historically this should come first, since it was
the work of Fagnano and Euler on addition theorems for elliptic integrals
which eventually led to the discovery of elliptic functions.

Whereas Chapters 1-3 can be regarded as concerned with meromorphic
functions on two specific surfaces £ and C/Q, the theme of Chapter 4 is to
take a function f (possibly many-valued, such as log(z)) and to find the
most natural surface to regard as its domain of definition. More precisely,
we replace f by a single-valued function ¢ which represents the different
branches of f; the domain of ¢, chosen to be as large as possible subject to ¢
representing f locally, is called the Riemann surface S of f. The
construction of ¢ and S involves the concepts of analytic and meromorphic
continuation, together with the monodromy theorem which allow us to
construct single-valued functions on simply connected regions; several
examples, such as log(z) and /p(z) (p a polynomial) are studied in detail.
In the second half of the chapter we consider Riemann surfaces as abstract
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topological objects in their own right, not necessarily obtained from
functions. By introducing the concept of the germ of a meromorphic
function we show that every algebraic function determines a compact
Riemann surface, and we prove the Riemann-Hurwitz formula for the
genus of such a surface. Every Riemann surface is conformally equivalent
(that is, isomorphic) to a quotient surface S/G, where § (the universal
covering space of S) is a simply connected Riemann surface and G is a
discrete group of automorphisms of §; for example, a torus S has the form
C/Q for some lattice Q which acts as a discrete group of translations of § =
C. By the uniformisation theorem of Poincaré and Koebe (the proof of
which is beyond the scope of this book), § is conformally equivalent to C, £
or % = {zeC|Im(z) > 0}, so we conclude the chapter by determining the
automorphism groups of these three important surfaces.

With just a few exceptions, most Riemann surfaces S have as their
universal covering space S the upper half-plane #, and Chapter § is
devoted to the study of this particular surface and its discrete groups of
automorphisms. These are the Fuchsian groups, consisting of M&bius
transformations (*) with a,b,c,deR and ad —bc =1; by defining an
appropriate metric on # (the hyperbolic metric) we can regard 4 as a model
of the hyperbolic plane, with these transformations acting as isometries.
This situation is similar to, but considerably more complicated than earlier
cases where we considered automorphisms of X and of C. Using hyperbolic
geometry we study Fuchsian groups G, the associated quotient surfaces S =
/G, and their automorphism groups Aut S. For example, if § is compact
and has genus g > 1, then [Aut S| < 84(g — 1), and we shall give an algebraic
description of the Fuchsian groups G and the groups Aut S (the Hurwitz
groups) for which this bound is attained.

Chapter 6 concerns perhaps the most important of all Fuchsian groups,
the modular group I' consisting of the Mobius transformations (*) with
a,b,c,deZ and ad — bc = 1. This group and its action on ¥ arise from the
problem of determining all Riemann surfaces of genus 1, or equivalently, all
similarity classes of lattices Q = C; there is one conformal equivalence class
of such surfaces for each orbit of I' on %. For example, if p(z) is a cubic
polynomial with distinct roots then the Riemann surface S of /p(z) has
genus 1, and we shall show that S is conformally equivalent to a torus C/Q
by finding a lattice Q for which the associated Weierstrass elliptic function
$ satisfies the differential equation ¥’ = ,/p(®); this is done by construct-
ing an analytic function J:4 — C, invariant under the action of I' on %, and
using J to select the orbit of I on # corresponding to the appropriate lattice
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Q. (This function J is closely associated with the cross-ratio function 4
introduced in Chapter 2.) From its action on % we obtain generators and
relations for I', and hence we are able to consider its homomorphic images,
many of which (such as the Hurwitz groups) have already appeared in
earlier chapters. Finally we consider the quotient surfaces of # correspond-
ing to normal subgroups of I', including the congruence subgroups
obtained by mapping the coefficients a, b, ¢, d in (*) into the ring of integers
mod (n), for positive integers n.

The Appendix contains statements of the main elementary results we
have assumed about complex functions, and also some of the basic facts
(less well known than they should be) about polynomials and their
discriminants.

Clearly, this book contains considerably more material than could
possibly be taught in the 36-lecture course on which it is based: a typical
course would cover Chapter 1 and about half each of Chapters 2,3and 4. In
fact, since the chapters are fairly self-contained, this book could be used as
the basis for more specialised courses on several different subjects, such as
the Riemann sphere and its Mdbius transformations (Chapters 1 and 2),
elliptic functions (Chapters 1 and 3), analytic continuation and Riemann
surfaces (Chapters 1 and 4), and hyperbolic geometry (Chapter 5 and parts
of Chapter 4), while for more advanced students Chapter 6 would serve as
an introduction to the modular group, leading on to the more detailed
treatments in the books by Rankin and Schoeneberg.

In writing a book of this nature, one acquires many debts of gratitude.
Our first is to the great men, named above, who founded this subject; the

“ideas in this book are all theirs, and our only contribution has been to
become sufficiently enthusiastic to wish to teach, and then to write down,
what they did. One learns mathematics and how to communicate it from
many sources and people, far too numerous to mention here; let us simply
say that without Murray Macbeath and Peter Neumann we could never
have written this book. Alan Beardon, who read the early drafts of the
manuscript, saved us from a number of embarrassing solecisms and
ambiguities with his detailed criticisms and generous advice, while Robin
Bryant, John Thornton and Mary Tyrer-Jones also gave us invaluable help
by checking some of the later drafts and the exercises; any remaining
blemishes are entirely of our own making. Beryl Betts, June Kerry and
Marie Turner deserve our heartfelt thanks for transforming our hand-
written scrawls into presentable typescript, and similarly Rose Cassell for
her careful drawing of the diagrams; we are also grateful to the staff of the
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Cambridge University Press, especially David Tranah, for their infinite
patience and cooperation during the writing of this book. Finally, our
eternal gratitude is due to our wives, who, during our several years of
writing, have had to display toleration and understanding well beyond that
specified in the marriage service.

Numbering of theorems

Theorems are numbered according to their chapter and section. For
example, Theorem 5.7.2 isin Chapter 5, Section 7. Equations are numbered
in the same way. The only exceptions are the theorems in the appendix,
which are numbered Theorem A.1, Theorem A.2, etc.



